

# Nonlocal Approaches to Neural Network Training

Shaghayegh Rouhi Faculty Advisor: Prof. Petronela Radu

Research Supported by UCARE

# Intro to Machine Learning

Machine Learning (ML) is a type of Al that allows computers to learn from data and make decisions without explicit programming.

Deep Learning is a branch of ML that uses multi-layered neural networks to model complex patterns and relationships in large datasets.

**Neural Networks (NN)**: Inspired by the human brain, composed of layers of interconnected nodes (neurons).

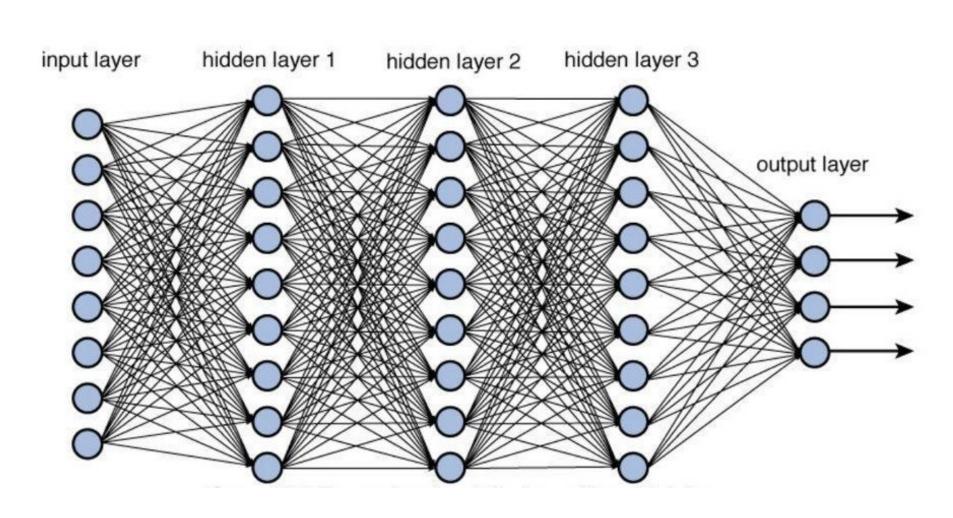


Figure 1. Neural Network Structure

**Activation Functions** add non-linearity to NNs, enabling them to learn complex patterns. Common examples: ReLU, sigmoid, and tanh.

**Rectified Linear Unit (ReLU)** is a popular activation function due to its simplicity and efficiency.

## Standard ReLU and Its Limitations:

$$ReLU(Z) = \max(0, Z) \tag{1}$$

Its derivative is:

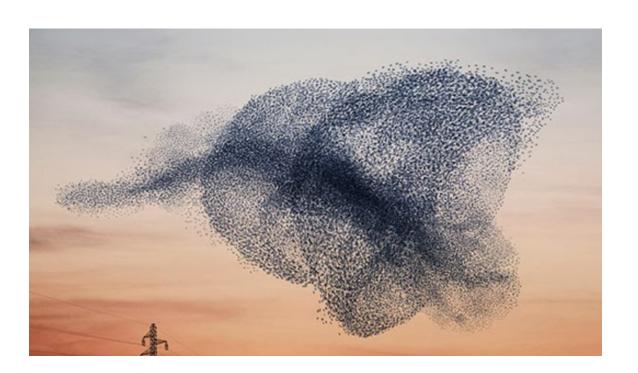
$$\operatorname{ReLU}'(Z) = \begin{cases} 0, & Z < 0 \\ 1, & Z > 0 \\ \text{undefined}, & Z = 0 \end{cases} \tag{2}$$

The discontinuity at Z=0 causes several issues:

- Instability: Backpropagation may lead to erratic weight updates.
- Dead Neurons: Neurons with negative inputs stop learning.
- Sharp Gradient Transitions: Sudden changes delay optimization.

# Nonlocal Models - Motivations & Applications

- Allow derivatives of discontinuous functions.
- Dynamic fracture: Crack growth or structural changes
- Image processing: Computers analyze images using algorithms
- Flocking and swarms





**Mathematical Background** 

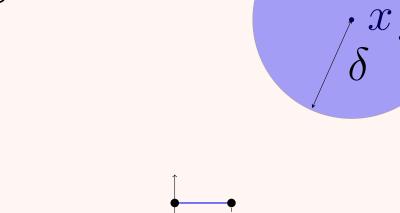
**Nonlocal Derivative** - For an interaction kernel  $\mu$  that is odd define

$$D_{\mu}u(x) := \int_{-\delta}^{\delta} [u(x+z) - u(x)]\mu(z) \, dz,$$

which approximates u'(x) as  $\delta \to 0$ . (A. Haar, P. Radu. A new nonlocal calculus framework, 2022)

# **Examples of Kernels**

The point x interacts with neighbors y within  $\delta$  through  $\mu(y-x)$ .



$$\mu_1(x) = \begin{cases} 0, & |x| > \delta \\ 1, & 0 < x < \delta \\ -1, & -\delta < x < 0 \end{cases}$$

 $\mu_2(x) = \begin{cases} x, & |x| < \delta \\ 0, & |x| > \delta \end{cases}$ 

#### Example:

$$D_{\mu_1} Re Lu(x) = \begin{cases} 0, & x < -\delta \\ x/\delta + 1/2 + x^2/2\delta^2, & -\delta < x < 0 \\ x/\delta + 1/2 - x^2/2\delta^2, & -\delta < x < 0 \\ 1, & x > \delta \end{cases}$$

# **Model Structure**

#### Model Overview

- Dataset: MNIST
- Input: 784 features (28x28 image), normalized by 255.
- Hidden Layer: 10 neurons with ReLU activation.
- Output Layer: 10 neurons with Softmax activation.
- Training: Gradient descent, 1500 iterations, learning rate  $\alpha = 0.1$ .
- Loss Function: Cross-entropy with backpropagation.

**ReLU Derivative Adjustment:** We introduce a smooth, parameterized alternative using  $\delta$  to approximate a continuous transition near zero.

# Key Properties of the New ReLU Derivative

- Continuity: Smooth transition reduces instability at Z=0.
- Nonlocal Dependence: The response incorporates neighboring values for better gradient flow.
- Quadratic Approximation: Improves training stability without high computational cost.

### Effect of Smoothing Parameter $\delta$

- Small  $\delta \to \text{Approximates}$  standard ReLU (less smooth).
- Larger  $\delta \to \text{More smoothing, may slow training like tanh/sigmoid.}$

# **Experiments & Results - Nonlocal ReLu**

def ReLU\_deriv(Z): return (Z > 0).astype(float)

Figure 4. Standard ReLU function

np.where(Z < 0, (Z / delta) - 1 / 2 + (Z\*\*2 / 2 \* delta\*\*2), # Z between -delta and 0 (</pre> (Z / delta) - 1 / 2 + (Z\*\*2 / 2 \* delta\*\*2)))) # Z between 0 and delta (\*m)

Figure 5. Adjusted Nonlocal ReLU function

| Accuracy | ReLU     | d/dx ReLU |  |
|----------|----------|-----------|--|
| 89%      | Standard | Standard  |  |
| 92%      | ReLU     | D(ReLU)   |  |

Table 1. Accuracy Comparison of Standard vs. Nonlocal ReLU

| İ | _        |          |          |  |
|---|----------|----------|----------|--|
|   | Accuracy | $\alpha$ | Iteratio |  |
|   | 54%      | 0.01     | 1500     |  |
|   | 89.90%   | 0.05     | 1500     |  |
|   | 92%      | 0.1      | 1500     |  |
|   | 94.80%   | 0.5      | 1500     |  |
|   | 94.60%   | 0.7      | 1500     |  |
|   | 89%      | 1        | 1500     |  |

Table 2. Accuracy Results for Different Learning Rates ( $\alpha$ ) in the Nonlocal ReLU

| Original |           |         | Nonlocal |           |         |
|----------|-----------|---------|----------|-----------|---------|
| Type     | Iteration | Time    | Type     | Iteration | Time    |
| original | 500       | 3m 31s  | nonlocal | 500       | 6m 32s  |
| Accuracy | 98.0%     |         | Accuracy | 97.7%     |         |
| Alpha    | 0.5       |         | Alpha    | 0.5       |         |
| original | 600       | 4m 4.7s | nonlocal | 600       | 10m 11s |
| Accuracy | 98.8%     |         | Accuracy | 98.5%     |         |
| Alpha    | 0.65      |         | Alpha    | 0.65      |         |

Table 3. Comparison of Original vs Nonlocal ReLU Function at Different Iterations

#### **Conclusions & Future Work**

### Benefits of This Approach:

- Stabilizes training and avoids dead neurons
- Enables smooth, predictable gradient updates
- Higher computational accuracy by avoiding undefined points
- Simple to integrate into existing models

#### Applications:

- Deep and reinforcement learning
- Low-precision and scientific computing

# Future Work:

- Test across kernels and activations
- Apply to more real-world ML tasks/data-sets