
Nonlocal Approaches to Neural Network Training
Shaghayegh Rouhi

Faculty Advisor: Prof. Petronela Radu
Research Supported by UCARE

Intro to Machine Learning

Machine Learning (ML) is a type of AI that allows computers to learn
from data and make decisions without explicit programming.

Deep Learning is a branch of ML that uses multi‐layered neural networks
to model complex patterns and relationships in large datasets.

Neural Networks (NN): Inspired by the human brain, composed of layers
of interconnected nodes (neurons).

Figure 1. Neural Network Structure

Activation Functions add non‐linearity to NNs, enabling them to learn
complex patterns. Common examples: ReLU, sigmoid, and tanh.

Rectified Linear Unit (ReLU) is a popular activation function due to its
simplicity and efficiency.

Standard ReLU and Its Limitations:
ReLU(Z) = max(0, Z) (1)

Its derivative is:

ReLU′(Z) =


0, Z < 0
1, Z > 0
undefined, Z = 0

(2)

The discontinuity at Z = 0 causes several issues:

Instability: Backpropagation may lead to erratic weight updates.
Dead Neurons: Neurons with negative inputs stop learning.
Sharp Gradient Transitions: Sudden changes delay optimization.

Nonlocal Models - Motivations & Applications

Allow derivatives of discontinuous functions.
Dynamic fracture: Crack growth or structural changes
Image processing: Computers analyze images using algorithms
Flocking and swarms

Figure 2. Swarming Figure 3. Fragmented Glass

Mathematical Background

Nonlocal Derivative ‐ For an interaction kernel µ that is odd define

Dµu(x) :=
∫ δ

−δ

[u(x + z) − u(x)]µ(z) dz,

which approximates u′(x) as δ → 0. (A. Haar, P. Radu. A new nonlocal
calculus framework, 2022)

Examples of Kernels

The point x interacts with neighbors
y within δ through µ(y − x). x

δ
y

µ1(x) =


0, |x| > δ

1, 0 < x < δ

−1, −δ < x < 0
x−δ δ

µ2(x) =

{
x, |x| < δ

0, |x| > δ
x−δ δ

Example:

Dµ1ReLu(x) =


0, x < −δ

x/δ + 1/2 + x2/2δ2, −δ < x < 0
x/δ + 1/2 − x2/2δ2, −δ < x < 0
1, x > δ

Model Structure

Model Overview
Dataset: MNIST
Input: 784 features (28x28 image), normalized by 255.
Hidden Layer: 10 neurons with ReLU activation.
Output Layer: 10 neurons with Softmax activation.
Training: Gradient descent, 1500 iterations, learning rate α = 0.1.
Loss Function: Cross‐entropy with backpropagation.

ReLU Derivative Adjustment: We introduce a smooth, parameterized
alternative using δ to approximate a continuous transition near zero.

Key Properties of the New ReLU Derivative

Continuity: Smooth transition reduces instability at Z = 0.
Nonlocal Dependence: The response incorporates neighboring
values for better gradient flow.
Quadratic Approximation: Improves training stability without high
computational cost.

Effect of Smoothing Parameter δ

Small δ → Approximates standard ReLU (less smooth).
Larger δ → More smoothing, may slow training like tanh/sigmoid.

Experiments & Results - Nonlocal ReLu

Figure 4. Standard ReLU function

Figure 5. Adjusted Nonlocal ReLU function

Accuracy ReLU d/dx ReLU
89% Standard Standard
92% ReLU D(ReLU)

Table 1. Accuracy Comparison of Standard vs. Nonlocal ReLU

Accuracy α Iteration
54% 0.01 1500

89.90% 0.05 1500
92% 0.1 1500
94.80% 0.5 1500
94.60% 0.7 1500
89% 1 1500

Table 2. Accuracy Results for Different Learning Rates (α) in the Nonlocal ReLU

Original Nonlocal
Type Iteration Time Type Iteration Time
original 500 3m 31s nonlocal 500 6m 32s
Accuracy 98.0% Accuracy 97.7%
Alpha 0.5 Alpha 0.5
original 600 4m 4.7s nonlocal 600 10m 11s
Accuracy 98.8% Accuracy 98.5%
Alpha 0.65 Alpha 0.65

Table 3. Comparison of Original vs Nonlocal ReLU Function at Different Iterations

Conclusions & FutureWork

Benefits of This Approach:
Stabilizes training and avoids dead neurons
Enables smooth, predictable gradient updates
Higher computational accuracy by avoiding undefined points
Simple to integrate into existing models

Applications:
Deep and reinforcement learning
Low‐precision and scientific computing

Future Work:
Test across kernels and activations
Apply to more real‐world ML tasks/data‐sets

